From time to time, Belts may meet people who strongly oppose the implementation of Lean Six Sigma. These people may have had bad experiences, such as failed projects or losses on investment, which planted seeds of doubt regarding the usability of the Lean Six Sigma framework. But when projects or deployments fail, is it really Lean Six Sigma itself that is to blame?
A closer look at these negative experiences will lead to the real root cause of failure. Often it is not the Lean Six Sigma methodology at fault, but the false belief in change for the sake of change.
Not all change is good; change is worthwhile only if it brings improvement. To be successful, Belts must understand the difference between making changes that lead to improvements, and simply making changes. To do this, it may help to integrate Lean Six Sigma with the Theory of Constraints to help focus project efforts on the areas that are hampering business.
Change for the Better
What is a good change? The first answer that many Belts think of is a change that is in line with business objectives. But how foolproof is this statement? What if one business objective contradicts another, bettering one but worsening the other?
For example, consider a project aimed at process standardization and control, which is one of the business’ objectives. However, the project also increases process wait time, which is not value added. Is it correct to say, then, that the project failed because it increased non-value-added time? Further, is it worth improving the efficiency of a process step if it is going to increase the wait time before the next step picks up the job? Is it worth increasing the speed of a procedure to generate a file by 9 a.m., even when the file is not needed until noon? Was the cost of implementing the improvement justified?
Clearly, it is not always necessary to implement an opportunity that meets one of the business’ objectives. More thought must go into selecting any opportunity. A project with the goal statement, “Reduce the cost of process ABC by 10 percent by the end of July 2010,” may sound tempting, but Belts also need to think of the implications that this project would involve. In this case, if the end product’s quality suffers, the cost reduction will decrease sales and, in turn, revenue.
Finding a Solution
The problem in the example above is not one of failure or success of Lean Six Sigma. It is not a problem of application of the right tools. It is a problem of focus; Belts must focus their attention on the areas, or constraints, that are causing the real problem.
Project and deployment failures happen not because of the methodology, but because they are implemented in the wrong places. The focus of a deployment should be on achieving global, rather than local, optimization. Belts can increase the efficiency and design of multiple business gears and achieve local optimization, but these efforts do not always help the organization achieve business objectives (such as increasing revenue, cutting cost and increasing throughput). To understand whether a particular improvement brings global optimization, Belts can integrate their current process improvement efforts with the Theory of Constraints (TOC).
Introducing Theory of Constraints
TOC is based on the concept that a chain always has one weakest link. Similarly, in any complex system, at any point in time, there is most often only one aspect of that system that limits its ability to achieve its goal. The same is true for an organization. Thus, for any organization to attain significant improvement, the constraint must be identified and the whole system must be managed to keep that constraint in mind.
The five-step TOC process is:
1. Identify the constraint – Anything that delays or stops a process from achieving its goal.
2. Exploit the constraint – Get the most out of the constraint resource.
3. Subordinate the complete system to the constraint – Let the resources that have excess capacity remain idle, or spend capacity to help the constraint. Avoid unnecessary inventory.
4. Elevate the constraint – Raise the throughput rate of the constraint.
5. Do not let inertia become the constraint – If Belts keep improving the same link of the chain, there will come a time when this link becomes stronger than some other link. To ensure that Belts are always working on the current constraint, the TOC process should be repeated.
An integrated approach to process improvement can be:
0 comments:
Post a Comment